이 쿠키는 웹사이트가 정상적으로 작동하는 데 필요하며 시스템에서 꺼질 수 없습니다. 주로 사용자가 요청한 서비스(개인정보 설정, 로그인, 양식 작성 등)를 제공하기 위해 설정됩니다. 브라우저에서 이 쿠키를 차단하거나 알림을 받을 수 있도록 설정할 수 있지만, 이 경우 사이트 일부 기능이 정상적으로 작동하지 않을 수 있습니다. 이 쿠키는 개인 식별 정보를 저장하지 않습니다.
+타겟팅 쿠키
이 쿠키는 광고 파트너를 통해 설정되며, 귀하의 관심사에 기반한 광고를 다른 사이트에 표시하는 데 사용됩니다. 이 쿠키는 직접적으로 개인정보를 저장하지 않으며, 브라우저와 인터넷 기기 식별을 기반으로 작동합니다. 이 쿠키를 허용하지 않으면 타겟팅 광고를 덜 경험하게 됩니다.
+성능 쿠키
이 쿠키는 웹사이트 방문자 수 및 트래픽 소스를 집계하여, 사이트의 성능을 측정하고 개선하는 데 사용됩니다. 어떤 페이지가 인기가 많은지, 방문자가 사이트를 어떻게 이동하는지를 파악하는 데 도움이 됩니다. 모든 정보는 익명으로 수집되며, 이 쿠키를 허용하지 않을 경우 방문 및 활동 기록을 알 수 없어 사이트 성능 모니터링에 제약이 생깁니다.
Experience of Implementing Deep Learning-Based Automatic Contouring in Breast Radiation Therapy Planning: Insights from Over 2,000 Cases
Authors
Byung min Lee MD, Jin Sung Kim PhD, Yongjin Chang MS,
Seo Hee Choi MD, Jong Won Park MD, Hwa Kyung Byun MD, PhD, Yong Bae Kim MD, PhD, Ik Jae Lee MD, PhD, Jee Suk Chang MD, PhD
This paper presents the findings from implementing a deep learning-based automatic contouring system in breast radiation therapy planning, analyzing over 2,000 cases. Introduced in 2019, the study assessed the system's impact and clinical utility by comparing auto-contours with final contours, adjusted manually, in 2,428 adjuvant breast radiation therapy patients. The evaluation utilized the Dice similarity coefficient (DSC) and the 95% Hausdorff distance (HD95) for comparison, analyzing 22,215 structures. Results indicated that final contours were generally larger, with significant improvements in DSC and reduced HD95 for organs-at-risk (OAR) post-implementation, except for the lungs. Target volumes also showed improved outcomes, albeit less pronounced than OARs. The study highlights the auto-contouring system's utility and the increased reliance on automated settings, raising concerns about automation bias. It suggests the necessity of stringent risk assessments and quality management strategies to optimize the use of such systems, ensuring patient safety and treatment effectiveness.