문의하기 아이콘
문의하기 텍스트
top 아이콘
coreline logo
close icon
Cookie Settings Information

When you visit our website, we store cookies on your browser to collect information. The information collected may relate to you, your device, or your preferences, and is primarily used to ensure the website functions properly and to provide a more personalized web experience.

However, you may choose to disallow certain types of cookies, which could affect your user experience and the services we are able to offer. You can click on each category below to learn more and adjust your default settings.

Please note that Strictly Necessary Cookies are essential for the basic functioning of the website and cannot be disabled (e.g., maintaining login sessions, remembering settings). For more detailed information about cookies, please refer to our [Privacy Policy].

Manage Consent Preferences
+Strictly Necessary CookiesAlways Active
These cookies are essential for the website to function properly and cannot be switched off in our systems. They are usually set only in response to actions you take, such as setting your privacy preferences, logging in, or filling out forms. You can set your browser to block or alert you about these cookies, but some parts of the site may not function properly as a result. These cookies do not store any personally identifiable information.
+Targeting Cookies
These cookies may be set through our site by our advertising partners. They are used to build a profile of your interests and show you relevant advertisements on other sites. These cookies do not directly store personal information but operate based on unique identification of your browser and device. If you do not allow these cookies, you will experience less targeted advertising.
+Performance
These cookies allow us to aggregate the number of visitors and traffic sources in order to measure and improve the performance of our website. They help us understand which pages are the most popular and how visitors navigate through the site. All information collected is aggregated and therefore anonymous. If you do not allow these cookies, we will not be able to monitor the performance of our site or know when you have visited it.
Save My Choices

Preoperative prediction of early recurrence in resectable pancreatic cancer integrating clinical, radiologic, and CT radiomics features

Authors
Jeong Hyun Lee, Jaeseung Shin, Ji Hye Min, Woo Kyoung Jeong, Honsoul Kim, Seo-Youn Choi, Jisun Lee, Sungjun Hong & Kyunga Kim
Journal
Cancer Imaging
Related Product

Research

Date Published
2024.01
Summary

Jeong Hyun Lee et al. developed a predictive model for early recurrence in resectable pancreatic cancer by integrating clinical, radiologic, and CT radiomics features. Retrospective data from 190 patients were used to create three models: radiomics-only, clinical-radiologic (CR), and clinical-radiologic-radiomics (CRR). Using the Aview software, an experienced radiologist manually segmented tumor volumes from CT images to create Volumes of Interest (VOIs), which were analyzed with PyRadiomics to extract 572 quantitative features. Random forest algorithms optimized model performance. Among the models, the CRR model demonstrated the highest accuracy (AUC = 0.83) during external validation, with balanced sensitivity (65%) and specificity (87%). Key predictive factors included elevated CA19-9 levels and specific radiomics markers. This approach improves preoperative risk stratification and guides personalized treatment, offering alternatives like neoadjuvant chemotherapy for high-risk patients. Future work should aim for automated segmentation, larger sample sizes, and prospective validation. This study advances tailored cancer management.

Contact

Please leave your inquiry if you have any questions regarding our products, recruitment, investment, or any other matters.

Contact us