문의하기 아이콘
문의하기 텍스트
top 아이콘
coreline logo
close icon
쿠키 설정 안내

저희 웹사이트를 방문하시면, 이용자의 브라우저에 쿠키를 저장하여 정보를 수집합니다. 수집되는 정보는 귀하 또는 귀하의 기기, 선호도와 관련될 수 있으며, 주로 웹사이트를 정상적으로 작동시키고, 더 개인화된 웹 경험을 제공하기 위해 사용됩니다.

다만, 사용자는 일부 유형의 쿠키 사용을 허용하지 않을 수 있으며, 이는 사이트 이용 경험과 제공 가능한 서비스에 영향을 미칠 수 있습니다. 쿠키 카테고리별로 자세히 알아보고 기본 설정을 변경하시려면 각 항목을 클릭해 주세요.

참고로, 필수 쿠키(Strictly Necessary Cookies)는 웹사이트의 정상 작동을 위해 반드시 필요하므로 사용자가 거부할 수 없습니다. (예: 로그인 유지, 설정 기억 등)

보다 자세한 쿠키 정보는 여기(개인정보처리방침)를 참고하시기 바랍니다.

동의 설정 관리
+필수 쿠키 항상 활성화됨
이 쿠키는 웹사이트가 정상적으로 작동하는 데 필요하며 시스템에서 꺼질 수 없습니다. 주로 사용자가 요청한 서비스(개인정보 설정, 로그인, 양식 작성 등)를 제공하기 위해 설정됩니다. 브라우저에서 이 쿠키를 차단하거나 알림을 받을 수 있도록 설정할 수 있지만, 이 경우 사이트 일부 기능이 정상적으로 작동하지 않을 수 있습니다. 이 쿠키는 개인 식별 정보를 저장하지 않습니다.
+타겟팅 쿠키
이 쿠키는 광고 파트너를 통해 설정되며, 귀하의 관심사에 기반한 광고를 다른 사이트에 표시하는 데 사용됩니다. 이 쿠키는 직접적으로 개인정보를 저장하지 않으며, 브라우저와 인터넷 기기 식별을 기반으로 작동합니다. 이 쿠키를 허용하지 않으면 타겟팅 광고를 덜 경험하게 됩니다.
+성능 쿠키
이 쿠키는 웹사이트 방문자 수 및 트래픽 소스를 집계하여, 사이트의 성능을 측정하고 개선하는 데 사용됩니다. 어떤 페이지가 인기가 많은지, 방문자가 사이트를 어떻게 이동하는지를 파악하는 데 도움이 됩니다. 모든 정보는 익명으로 수집되며, 이 쿠키를 허용하지 않을 경우 방문 및 활동 기록을 알 수 없어 사이트 성능 모니터링에 제약이 생깁니다.
내 선택사항 확인 및 저장하기

Fully Automated Lung Lobe Segmentation in Volumetric Chest CT with 3D U-Net: Validation with Intra- and Extra-Datasets

Authors
Jongha Park, Jihye Yun, Namkug Kim, Beomhee Park, Yongwon Cho, Hee Jun Park, Mijeong Song, Minho Lee, Joon Beom Seo
Journal
Journal of Digital Imaging, May 2019
Related Product

LCS, COPD

Date Published
2019. 05
Summary

This study developed and validated a fully automated lung lobe segmentation method with 3D U-Net, using chest CT scans of 196 normal and mild-to-moderate COPD patients from three centers. Manual correction by a thoracic radiologist served as the gold standard for comparison. The deep learning method showed high accuracy in both internal and external validation when compared to the gold standards using metrics such as Dice similarity coefficient (DSC), Jaccard similarity coefficient (JSC), mean surface distance (MSD), and Hausdorff surface distance (HSD). The segmentation method was also time-efficient. Despite challenges in developing a robust automatic lung lobe segmentation method, this deep learning–based 3D U-Net method demonstrated promising accuracy and computational time, and could potentially be adapted for severe lung diseases in clinical workflows. The algorithm used for this method has been commercialized in AVIEW by Coreline Soft.

Contact

제품, 인재 채용, 투자 관련 또는 기타 문의사항이 있으신 경우 편하신 방법으로 연락주시기 바랍니다

문의하기